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A solution method of the Holstein-Biberman equation in the case of two-dimensional finite-size geometry by
means of transformation of the integral operator to a four-dimensional matrix is presented. Using this matrix
the array of two-dimensional eigenvalues and eigenfunctions of the radiation transport operator in the case of
finite cylinder is determined. The exact two-dimensional characteristics have been compared with approximate
functions determined as a combination of corresponding eigenvalues and eigenfunctions for the one-
dimensional problems �cylinder of infinite length and slab�. The spatiotemporal evolution of excited atom
densities for two typical forms of the excitation source in a nonequilibrium plasma has been analyzed. The
reasons for the distinct difference in the formation of spatiotemporal distributions of resonance and metastable
atoms in the case when the spatial distribution of the excitation source does not coincide with the fundamental
mode are discussed. Resonance atoms follow the excitation source while the diffusion effectively takes meta-
stable atoms out from the excitation source. Rearrangement of metastable atoms to the fundamental mode
during their decay lasts about one effective diffusion lifetime while the corresponding process for the reso-
nance atoms takes much longer �several effective lifetimes�. The differences are caused by the effective
suppression of higher diffusion modes compared with radiation modes. The developed solution method treats
the radiation transport processes at the same accuracy level as diffusion transport of other plasma components
and it is suitable for a self-consistent modeling of nonequilibrium plasmas.
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I. INTRODUCTION

Long-living excited atoms play an important role in gas
discharge physics. Metastable and resonance atoms are in-
volved in the processes of stepwise excitation and ionization,
chemoionization, and associative ionization, and they partici-
pate in the transport of excitation to the working states in gas
lasers. The escape of resonance radiation at the tube walls
causes the excitation of photoluminescent phosphor and de-
termines the efficiency of luminescent lamps. Long lifetime
of atoms affects the properties of afterglow as well as the
active phase of pulsed, rf, and microwave discharges �1–4�.
The lifetime causes a phase shift between ionization and
charged particle density course in alternating fields, and thus,
can be a reason for plasma stratification.

The formation of spatiotemporal distributions of meta-
stable and resonance atoms are controlled by different trans-
port mechanisms. The diffusion of metastable atoms is con-
nected with particle transport in the surrounded gas only. In
this case, the determination of the corresponding spatiotem-
poral distribution requires the solution of a partial differential
equation with the diffusion operator proportional to the den-
sity gradient. Solution methods for such equations are well
developed and available even for three-dimensional time-
dependent cases. The “diffusion” of the resonance atoms is
connected with a number of emission and absorption events
since the lifetime of the resonance state is much shorter com-
pared with the characteristic time of the particle movement.

At first sight the radiation transport is analogous to the dif-
fusion process, since an excited atom changes its spatial po-
sition due to numerous events of re-emission. However, this
analogy is rather illusory. The description of a diffusion pro-
cess is based on the mean-free path of particles. In the case
of resonance atoms the photon path between emission and
absorption events depends on the frequency the photon was
emitted at. If the frequency corresponds to the central part of
the spectral line profile, this distance is rather short due to a
high value of the absorption coefficient. However, in the case
of the profile wings the absorption is weak and the photon
can travel a long distance without being absorbed. The cal-
culation of the photon mean-free path in the classical way
gives an infinite value, i.e., the photon mean-free path is
comparable with the discharge size. Therefore, the descrip-
tion of the transport of excitation due to radiation in the
diffusion approach is inadequate, and a more general formu-
lation of the operator which describes the radiation transport
is necessary. This operator has an integral form. The balance
equation for the density of resonance atoms was formulated
in the works of Holstein �5,6� and Biberman �7�.

The problem of radiation transport is widely discussed in
the literature. A comprehensive review of the radiation trans-
port phenomena in the gas discharge plasma is presented in
�8�. The solution of Holstein-Biberman equation is consid-
ered in numerous publications �for example �9–27�� for a
number of special cases. The spectrum of considered prob-
lems spreads from consideration of pure radiation transport,
where all other processes are neglected, to complex models
which include the Holstein-Biberman equation in the system
of fluid equations for different heavy particles �20,25–27�.*gorchakov@inp-greifswald.de
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For the description of the discharge plasma the excitation
source for each species has to be known. In addition the
processes of collisional intermixing between different ex-
cited states have to be taken into account. Hence, for the
self-consistent description of the discharge a simultaneous
solution of the equation system for all plasma components is
necessary. In order to achieve the desired accuracy and save
computation time, among others a special solution technique
for the Holstein-Biberman equation is required. There are
numerous analytical and numerical methods for solving the
radiation transport equation. Most common is the effective
lifetime approach �5,6�, which uses the local balancing of the
resonance atoms only, while their redistribution in space is
not accounted for. This method is accurate enough if the
spatial distribution of the excitation rate is close to the fun-
damental mode. The attempts to include the dependence of
effective lifetime on coordinates lead to insignificant im-
provements only. The most accurate method is the Monte
Carlo simulation which can be applied for complex geometry
and an arbitrary spectral line profile taking into account pos-
sible correlation between absorbed and emitted photon fre-
quencies �17,18�. However, when the total gas pressure ex-
ceeds about 100 Pa this method becomes inapplicable in
most cases due to computation expenditure.

One of the most promising solution methods for the
Holstein-Biberman equation consists in the conversion of the
integral radiation transport operator to a matrix which leads
to a transformation of the integro-differential equation to a
system of linear equations �24�. The effective transition-
probability approximation is equivalent to the replacement of
the integral radiation transport operator by an expression
Aeff

resI where I is the unit matrix and Aeff
res is the effective tran-

sition probability for the center of the discharge. In contrast
to this, the use of this method �24� leads to the transforma-

tion of the integral operator to the matrix Aeff
resB̄, where B̄ is a

full matrix. The diagonal elements of the matrix B̄ are equal
to 1 and describe the radiative decay of resonance atoms,
whereas the nondiagonal elements are negative and corre-
spond to the redistribution of the atoms in space by means of
re-emission. This method has been successfully applied for
the description of radiation transport in cylindrical geometry
with infinite length and for the slab �two infinite parallel
plates� in the case of different profiles of spectral line
�22,24–26�. However, real plasma sources, such as plasma-
chemical reactors or inductively coupled plasma sources
�ICP�, have plasma sources, have finite size. For this situa-
tion the matrix method has to be extended. According to �8�
the computation of the matrix elements becomes more com-
plicated because the analytical tricks can no longer be used.
For the finite cylinder, we get, e.g., triple integrals. The in-
version of the matrix also takes much longer. The authors
suggest to use approximate eigenvalues as a sum of eigen-
values of one-dimensional problems and eigenmodes equal
to a product of corresponding eigenfunctions of the one-
dimensional problems. Using such approximations in �28�
the two-dimensional �2D� effects and the saturation in a
laser-excited atomic vapor has been studied. The solution of
radiative transfer equation for the radiation intensity has
been performed using the expansion of the laser intensity

into a series of Legendre polynomials and solving the rate
equation system for excited states by means of a method
similar to the so-called propagator function method �29�. The
work �28� includes some simple approximations with error
estimates for radiation transport in a finite cylinder. In the
case of real multicomponent plasma where the collisional
interaction plays an important role and without external ra-
diation source, the system of Holstein-Biberman equations
for the densities of resonance atoms has to be solved. Here
the matrix methods developed in �24� is the most suitable
solution technique. The matrix method avoids any expan-
sions and is free of effective and fitting parameters. It guar-
antees a high accuracy by low cost of CPU time since the
integration over the frequency is made prior to the calcula-
tions. As shown in �22,24–26� in the case of one-dimensional
geometry, the exact description of radiation transport in the
rate equation system for excited states leads to the differ-
ences in the absolute densities up to a factor of 2. Conse-
quently, such plasma properties as the ionization balance and
output radiation characteristics are strongly influenced by the
accuracy of the radiation transport description. For example,
the differences in the output power of the low-pressure light
sources can reach up to 25% which has been found in better
agreement with the experiment �25�. Hence, further develop-
ment of the matrix method promise not only an accurate
description of radiation transport but also more realistic re-
sults in numerical models.

In the present work the solution method for the radiation
transport equation in a cylinder of finite size is considered.
The matrix method suggested in �24� is extended to this con-
dition. For the case of investigations the universal matrix has
been determined. The elements of the matrix depend on the
ratio of cylinder length to its diameter. The calculated matrix
has been used to determine a two-dimensional array of ei-
genvalues and eigenfunctions. These two-dimensional char-
acteristics are compared with the combination of correspond-
ing characteristics of one-dimensional problems. Using the
developed method, the spatiotemporal distributions of the
densities of metastable and resonance atoms have been ana-
lyzed for the cases with two typical profiles of the excitation
source, namely, excitation in the center of the cylinder and
on its periphery �skin effect�.

II. INITIAL EQUATIONS AND EFFECTIVE TRANSITION-
PROBABILITY APPROXIMATION

In the following the radiation transport equation is ana-
lyzed for the case when no collisional intermixing between
excited states occurs. In this case the balance equation for the
density of the resonance atoms including radiation process
�Holstein-Biberman equation� reads �5–7�

�

�t
Nr�r,t� = Wr�r,t� − G�r,Nr�r,t�� . �1�

Here Nr is the density of resonance atoms and Wr is a num-
ber of excitation events in the unit volume per second. The
radiation transport operator G is determined by
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G�r,Nr�r,t�� = ANr�r,t� − A�
�V�

Nr�r�,t�K��r� − r��dr�, �2�

where A is the spontaneous transition probability and the
kernel K��r�−r�� is the probability for the photons emitted at
point r� to pass the distance �r�−r� and to be absorbed at
point r. The integration is performed over the whole plasma
volume V. The kernel of the integral operator �2� can be
represented as �8�

K��r� − r�� =
1

4�
�

0

�

��k�

e−k��r�−r�

�r� − r�2
d� , �3�

where �� and k� are emission and absorption line profiles
which are assumed to be coincident and normalized accord-
ing to

�
0

�

��d� = 1, �4�

k� = k0
��

�0
. �5�

Here �0 and k0 are the coefficients in the center of the profile.
The radiation transport operator �2� describes the change

in the isolated resonance atoms density in time by the spon-
taneous emission at point r �first term in the right side� and
by the absorption of the photons coming from the whole
plasma volume to point r �second term�. Here, the case with
a large value of the absorption coefficient �higher than 10�
will be considered. This assumption is usually well fulfilled
in low- and medium-pressure discharges. The profiles of the
absorption and emission lines are supposed to have a Lorent-
zian form. This is assured if the pressure value exceeds about
1 Pa. These assumptions lead to a simplification of radiation
transport operator by a substitution of the asymptotics for the
profile wings.

The effective transition-probability approximation by Bib-
erman �7� is based on the assumption that the kernel of the
operator K��r�−r�� as a function of distance �r�−r� decreases
much faster than the atom density Nr does. In this case it is
possible to take the value of the density at point r out of the
integral in Eq. �2� and the radiation transport operator gets
the representation

G�r,Nr�r,t�� = Aeff�r�Nr�r,t� , �6�

with

Aeff�r� = A�1 − �
�V�

K��r� − r��dr� 	 A · g�r� . �7�

Here, g�r� is the escape factor characterizing the decrease of
the probability of spontaneous emission due to radiation
trapping. It should be mentioned that the effective probabil-
ity by Biberman �7� differs from the reciprocal effective life-
time by Holstein �eff

−1 �5,6� determined as the lifetime of the
fundamental mode. In the case of large absorption coeffi-
cients the central part of the profile is fully absorbed and the
radiation transport occurs due to the wings of the profile.

For a finite-size cylinder the determination of the escape
factor requires the fourfold integration over the spatial coor-
dinates and frequency. The derivation of the expression for
the escape factor is presented in Appendix A. Figure 1 shows
the escape factor in dependence on the radial and axial co-
ordinates for the case when the cylinder length L is equal to
its diameter 2R and the assumptions given in Appendix A.
The increase of the escape probability near the boundary
shows that photons emitted near the walls of the cylinder can
leave the volume much easier than those released in the cen-
ter of the cylinder.

III. TRANSFORMATION OF RADIATION TRANSPORT
INTEGRAL EQUATION TO A SYSTEM OF LINEAR

DIFFERENTIAL EQUATIONS

In case the resonance atom density varies rapidly in scales
of the decrease of the kernel K��r�−r��, the approximation of
effective transition probability is inadequate and more so-
phisticated method has to be used. Then, the solution method
of Eq. �1� consists in splitting of the whole plasma volume V
into the small volumes �V	 with integer 	. Inside each el-
ementary volume the density of resonance atoms Nr�r	� is
assumed to be constant. Using the relation V=
	�V	 the
integral operator �Eq. �2�� gets the representation

�
�V�

Nr�r��K��r� − r��dr � 

	

Nr�r	��
�V	

K��r� − r��dr�.

�8�

When the radius of the cylinder R and its length L are
divided in Mj parts with �r=R /Mj and Mi parts with �h
=L /Mi, respectively, the elementary volume �V	 will be a
ring localized in the intervals rj 
r�
rj+1, zi
z
zi+1, and
0
�
2�. The value of the resonance atom density Nr�r	�
is replaced by Nr�rj+1/2 ,zi+1/2�. Using this discretization the
integral Eq. �1� reduces to a system of linear equations

�

�t
Nr�rm+1/2,zn+1/2,t� + 


j=0

Mj−1



i=0

Mi−1

amnjiNr�rj+1/2,zi+1/2,t�

= Wr�rm+1/2,zn+1/2,t� ,

FIG. 1. Dependence of escape factor on the coordinates for fi-
nite cylinder.
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amnji = A�� ji�mn − B̄mnji� ,

B̄mnji = �
0

2�

d��
j�r

�j+1��r

r�dr�

�
i�z

�i+1��z

K�rm+1/2,zn+1/2,r�,z��dz�, �9�

where � ji and �mn are the Kronecker symbols and details of

the determination of the matrix coefficients B̄mnji are given in

Appendix B. The matrix B̄ is universal for a fixed ratio be-
tween the length and the diameter of the cylinder at fixed
spectral line profile.

After the transformation of the Holstein-Biberman equa-
tion �Eq. �1�� by means of the matrix method the densities of
the excited atoms as the functions of space and time can be
easily found using conventional iterative methods or Gauss
method �30�. As an example a stationary spatial distribution
of the excited atoms in the cylinder with L=2R for a �-like
excitation source is analyzed. The corresponding excitation
source has the form

W�r,z� = �1 L/2 
 z 
 L/2 + �z, 0 
 r 
 �r

0 otherwise,


�10�

with the parameters �r=R /30 and �z=L /60. The resulting
normalized density profiles are presented in Fig. 2.

The broadening of the spatial distribution of the resonance
atom density �Fig. 2�a�� due to the radiation transport pro-
cesses outward of excitation source is significant near the
walls in particular. The normalized density at the wall is
about 3 orders of magnitude less than in the center. In the
case of the particle diffusion �Fig. 2�b�� the spatial profile is
much more broadened. The excitation transport by radiation
is, therefore, less effective. The differences in the radiation
and diffusion transport mechanisms can be described by
means of eigenvalues and eigenfunctions analysis.

IV. EIGENFUNCTION METHOD FOR A FINITE
CYLINDER

The eigenfunction method is applicable in the case when
no collisional intermixing between the excited levels occurs.
First, the case without excitation source is considered. The
diffusion equation reads

�

�t
Nm�r,z,t� = Dm�1

r

�

�r
�r

�

�r
� +

�2

�z2�Nm�r,z,t� . �11�

Appropriate initial and boundary conditions are

Nm� r=R
z=0,L

= 0,

� �Nm

�r
�

r=0
= 0,

Nm�t=0 = Nm
0 �r,z� . �12�

Applying the method of separation of variables the solution
can be expressed in form of expansion on eigenfunctions
according to

Nm�r,z,t� = 

l



k

Cl,k
diffe−�l,k

difft�l,k
diff�r,z� . �13�

Cl,k
diff are the Fourier coefficients of initial distribution expan-

sion, and �l,k
diff and �l,k

diff�r ,z� are the two-dimensional eigen-
values and eigenfunctions of the diffusion transport operator.
The latter can be expressed as a linear combination of the
corresponding characteristics for one-dimensional problems.
They read

�l,k
diff = Dm���

L
�2

l2 + � xk

R
�2� , �14�

�l,k
diff�r,z� = �l

diff�z��k
diff�r� ,

�l
diff�z� = �2sin

�lz

L
; �k

diff�r� =
�2

J1�xk�
J0� r

R
xk� , �15�

where xk is the kth root of zero-order Bessel function, Dm is
the diffusion coefficient, and �l

diff�z� and �k
diff�r� are the one-

(b)(a)

FIG. 2. Spatial distribution of the density of �a� resonance and �b� metastable atoms for a �-like excitation source.
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dimensional eigenfunctions for the slab and infinite cylinder,
respectively.

In contrast to diffusion problem, the method of separation
of variables is inapplicable to the radiation transport operator
and the solution of Eq. �1� has to be represented in terms of
two-dimensional functions. According to Eq. �14� the radia-
tion transport equation without excitation source results in

Nr�r,z,t� = 

l



k

Cl,k
rese−�l,k

rest�l,k
res�r,z� . �16�

Here, the two-dimensional eigenvalues �l,k
res and eigenfunc-

tions �l,k
res�r ,z� cannot be expressed in terms of the corre-

sponding one-dimensional parameters. Thus, the determina-
tion of the spatiotemporal density distributions requires the
solution of a separate eigenvalue problem. The replacement
of the integral radiation transport operator by the matrix ac-
cording to Eq. �9� reduces this problem to the determination
of eigenvalues and eigenvectors of this matrix, i.e.,



j=0

Mj−1



i=0

Mi−1

amnji�l,k
res�rj+1/2,zi+1/2� = �l,k

res�l,k
res�rm+1/2,zn+1/2� .

�17�

Table I represents the normalized eigenvalues �̃l,k
res calcu-

lated for the cylinder with L=2R. The normalization is per-
formed according to

�l,k
res = �A/�k0R��̃l,k

res. �18�

The corresponding eigenvalues for one-dimensional prob-
lems are given in the Table II.

The ratio �̃l,k
res / ��̃l

res+ �̃k
res� between two-dimensional ei-

genvalues and the sum of the corresponding one-dimensional
eigenvalues is presented in Fig. 3�a�. The difference reaches

about 30% for the high-order modes and grows with increas-
ing mode number.

Figure 3�b� shows the ratio between the exact fundamen-
tal mode and the product of fundamental modes of one-
dimensional problems �00

res�r ,z� / ��0
res�r� ·�0

res�z��. The relative
difference reaches about 25% at the periphery. The devia-
tions are even greater for higher modes. Therefore, the spa-
tiotemporal distributions of the excited atom densities differ
as well, especially in the case when the excitation source
does not coincide with the fundamental mode.

Figure 4 shows the first nine eigenmodes of the radiation
transport operator for the cylinder with L=2R. With the ex-
ception of the fundamental mode �mode 0-0�, all the modes
show a change in sign. Depending on the spatial distribution
of excitation source these modes will contribute to the result-
ing density profiles of excited atoms. The influence of the
high-order modes on the density distribution is demonstrated
for a stationary and a decaying plasma in Secs. V and VI,
respectively, for typical forms of the excitation source in
nonequilibrium plasmas.

V. SPATIAL DISTRIBUTION OF EXCITED ATOM
DENSITY IN STATIONARY PLASMA

For the stationary plasma without intermixing between
excited states the spatial distributions can be determined us-
ing the expansion of the excitation source and excited atom
densities on eigenmodes according to

W�r,z� = 

l



k

Bl,k
res,diff�l,k

res,diff�r,z� , �19�

Nr,m�r,z� = 

l



k

Cl,k
res,diff�l,k

res,diff�r,z� , �20�

Bl,k
res,diff = �

0

R �
0

L

W�r,z��l,k
res,diff�r,z�rdrdz , �21�

Cl,k
res,diff =

Bl,k
res,diff

�l,k
res,diff . �22�

Following Eq. �23� the expansion coefficients decrease
with increasing mode number l ,k due to the growth of cor-
responding eigenvalues. The comparison between the eigen-
values of radiation transport and diffusion operator is shown
in Fig. 5. In the case of the radiation transport a larger num-
ber of high-order modes contributes to the solution expan-
sion. Furthermore, the eigenvalues of the diffusion operator
have higher absolute values and decrease much faster than
those of the radiation transport operator with growing mode
number. Therefore, the damping factor, which is inversely
proportional to the eigenvalues, is higher in the case of dif-
fusion. As a consequence, higher modes are of higher impor-
tance for the formation of spatial distribution of resonance
atoms than for the metastable atoms.

Figure 6 displays two typical forms of excitation source
W�r ,z� in nonequilibrium plasmas. Source A corresponds to
an excitation which is localized in the center of the volume

TABLE I. 2D array of eigenvalues �̃l,k
res.

l /k 0 1 2 3 4 5 6 7

0 1.269 1.544 1.819 2.077 2.313 2.533 2.737 2.928

1 1.899 2.014 2.169 2.341 2.520 2.698 2.872 3.042

2 2.395 2.459 2.552 2.667 2.796 2.933 3.074 3.216

3 2.812 2.853 2.916 2.997 3.092 3.197 3.309 3.426

4 3.178 3.207 3.252 3.313 3.385 3.467 3.557 3.653

5 3.508 3.529 3.564 3.611 3.668 3.733 3.807 3.887

6 3.810 3.827 3.854 3.892 3.938 3.992 4.053 4.119

7 4.091 4.105 4.127 4.157 4.196 4.241 4.300 4.360

TABLE II. Eigenvalues for slab �̃l
res and infinite cylinder

�̃k
res.

l �or k� 0 1 2 3 4 5 6 7

�̃l
res 0.443 0.732 0.928 1.093 1.234 1.363 1.479 1.588

�̃k
res 0.733 1.212 1.551 1.829 2.072 2.289 2.487 2.672
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(b)(a)

FIG. 3. �Color online� Deviation of �a� approximate eigenvalues from exact eigenvalues of two-dimensional problem and of �b�
approximate fundamental mode from the exact one.

(b)(a) (c)

(d) (f)(e)

(g) (h) (i)

FIG. 4. First nine eigenfunctions of the radiation transport operator.
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and source B represents the excitation on the periphery.
A number of modes and a damping factor strongly influ-

ence the resulting spatial distributions of corresponding ex-
cited atoms. As it is illustrated in Fig. 7, the normalized
density of the resonance atoms according to Eq. �20� follows
the form of the excitation source, i.e., the transport of exci-
tation outside of the source by radiation is inefficient. In
contrast to this, the profiles of the metastable atoms dis-
played in Fig. 8 are more broadened than those of the corre-
sponding source in Fig. 6. Thus, the damping of the high-
order modes leads to an effective excitation transport in
space.

VI. DECAY OF EXCITED ATOMS

The differences in diffusion and radiation transport
mechanisms correspondingly influence the characteristics of
the nonstationary plasma. As an example the decay from an
initially given spatial density distribution is considered.

The temporal evolution of resonance and metastable atom
densities is described by Eqs. �1� and �11�, respectively.
Their solutions are given by Eqs. �13� and �16�. If the initial
density distribution is similar to the fundamental mode, the

expansion contains only one term and an exponential decay
occurs. The effective lifetime by Holstein for the case of
cylinder with L=2R is defined by the expression �5,6�

1

�eff
res =

1.269
��k0R

A . �23�

The profile of the spatial density distribution in this case is
time independent.

When the spectrum of the initial density distribution con-
tains several modes, the decay is characterized by two simul-
taneous processes: �i� rearrangement of the spectrum to the
fundamental mode accompanied by vanishing of high-order
modes and �ii� exponential decay of this mode. Due to the
more effective suppression of the high-order modes in case
of particle diffusion, a different spatiotemporal decay of the
metastable and resonance atom densities occurs.

Resulting density distributions for the excitation source
localized on the periphery are represented in Figs. 9 and 10
for different instants of the temporal evolution. The density
of resonance atoms in Fig. 9 is far from the fundamental
mode even after few characteristic decay times �eff

res. In the

(b)(a)

FIG. 5. Two-dimensional array of eigenvalues of �a� radiation transport operator and �b� diffusion operator in the case of a cylinder with
L=2R.

(b)(a)

FIG. 6. Typical forms of excitation source in the nonequilibrium plasma; �a� excitation in the volume center �source A� and �b� on its
periphery �source B�.
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case of particle diffusion �Fig. 10� the distribution follows
the fundamental mode after only one characteristic time �eff

diff

which is given by

1

�eff
diff = Dm���

L
�2

+ �2.405

R
�2� . �24�

Analogous results have been obtained for the excitation
source localized in the discharge center.

Figures 11 and 12 demonstrate the relaxation of the nor-
malized initial density distribution for resonance and meta-
stable atoms in the case of excitation sources A and B, re-
spectively. The densities are traced for three spatial positions
on the cylinder axis, namely, in the center �r=0, z= 1

2L� and
in the points with coordinates �r=0, z= 3

8L� and �r=0, z
= 1

4L�. The decay of the fundamental mode corresponds to a
linear dependency of the density on the time in logarithmic
scale. The radiation transport requires typically several, i.e.,
about five to eight effective lifetimes �eff

res, for achievement of
the distribution corresponding to fundamental mode �Fig.
11�. The density of metastable atoms reaches the distribution
according to the fundamental mode already after one effec-
tive lifetime �eff

diff �Fig. 12�. These differences are caused
again by suppression of high-order modes of the transport
operator.

VII. SUMMARY

The influence of different transport phenomena, i.e., of
particle transport and radiation transport, on the spatiotem-
poral evolution of the densities of excited atoms in a finite-
size plasma has been investigated. For the description of the
radiation transport the matrix method developed in �24� has
been extended and applied. The study has been performed
for two typical forms of the excitation source in a nonequi-
librium plasma, namely, when the excitation is localized in
the volume center and on its periphery.

Using the matrix coefficients the exact two-dimensional
eigenvalues and eigenfunctions of the radiation transport op-
erator have been determined. The method of eigenfunctions
demonstrates the distinct differences in the transport mecha-
nisms. In the case of radiation transport the two-dimensional
eigenvalues and eigenfunctions cannot be expressed as a
combination of corresponding parameters of the one-
dimensional problems. The deviations which arise from an
approximation of the two-dimensional parameters by combi-
nation of one-dimensional functions have been evaluated.

The analysis shows that the high-order modes of the
transport operator expansion are of great importance for the
formation of the spatiotemporal distribution of the densities
of excited atoms. Effective suppression of these modes in the
case of particle diffusion leads to �i� an effective transport of

(b)(a)

FIG. 7. Spatial distribution of the resonance atoms in the case of �a� excitation source A and �b� excitation source B.

(a) (b)

FIG. 8. Spatial distribution of metastable atoms in the case of excitation source localized �a� in the center of the volume and �b� on the
periphery.
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excitation outside the excitation source and �ii� a fast rear-
rangement of an arbitrary initial distribution to the funda-
mental mode in the scale of the effective lifetime. In contrast
to this, the radiation transport follows the excitation source
in the stationary plasma and it preserves the form of initial
distribution for several effective lifetimes in the nonstation-
ary case. The developed solution method treats the radiation
transport processes at the same accuracy level as diffusion
transport of other plasma components and it is suitable for a
self-consistent modeling of nonequilibrium plasmas.

APPENDIX A: DETERMINATION OF THE EFFECTIVE
TRANSITION PROBABILITY

In the case of a Lorentz form of the spectral line profile
and high absorption coefficients, the central part of spectral
line profile is fully absorbed. The radiation transport results
from the far wings of the profile and the profile asymptotics
can be used. Thus, the emission and absorption coefficients
read

�� =
1

�

1

1 + �2 �
1

��2 , �A1�

k� =
k0

1 + �2 �
k0

�2 , �A2�

where �= ��−�0� /�� and �� is the half width of Lorentz
profile.

To determine the escape factor �7� at point �r ,z� it is nec-
essary to include the contributions from all the points �r� ,z��
which follows from the fourfold integration. In the case of
finite cylinder of length L and radius R �Fig. 13� the escape
factor is given by

g�r,z� = 1 −
1

4�
�

0

2�

d��
0

L

dz��
0

R

r�dr�

�
−�

�

��k�

e−k�
��z − z��2+q2�r,r�,��

�z − z��2 + q2�r,r�,��
d� ,

q2�r,r�,�� = r2 + r�2 − 2rr� cos � . �A3�

Here � is the angle between projections of the vectors r and
r� and q is the distance between the points �r ,z� and �r� ,z��.
The angle between the projections of the vectors q and r is
denoted by �. To calculate integral �A3� first the origin of the
coordinate system has to be shifted to point �r ,z�. Then,
using the variable transformation �r� ,��→ �q ,�� and taking
into account the equality r�dr�d�=qdqd� in Eq. �A3� reads

(b)(a)

FIG. 9. Spatial distributions of resonance atoms at the instants �a� 2�eff
res and �b� 4�eff

res in the case of source B.

(b)(a)

FIG. 10. Spatial distributions of metastable atoms at the instants �a� 0.2�eff
diff and �b� �eff

diff in the case of source B.
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g�r,z� = 1 −
1

2�
�

0

�

d��
−z

L−z

dz��
0

q0�r,��

qdq

�
−�

�

��k�

e−k�q�1+�z�/q�2

q�1 + �z�/q�2�
d� , �A4�

where

q0�r,�� = r cos � + �R2 − r2 sin2 �

is the maximum value of q which is obtained by taking into
account the shift of the coordinate system.

It is convenient to introduce the new variable �=z� /q.
Figure 14 shows the area of integration for different geom-
etries. In the case of a cylinder with radius R and length L the
determination of the escape factor reduces to the integration
over three areas according to

g�r,z� = 1 − �I1 + I2 + I3� ,

with

I1 =
1

2�
�

0

�

d��
�L−z�/q0

�

d��
−�

�

��k�d��
0

�L−z�/� e−k�q�1+�2

1 + �2 dq ,

I2 =
1

2�
�

0

�

d��
−z/q0

�L−z�/q0

d��
−�

�

��k�d��
0

q0 e−k�q�1+�2

1 + �2 dq ,

I3 =
1

2�
�

0

�

d��
z/q0

�

d��
−�

�

��k�d��
0

z/� e−k�q�1+�2

1 + �2 dq .

The integration over coordinate q and frequency � can be
performed analytically. Applying Eqs. �A1� and �A2� the in-
tegration yields the relations

I1 =
1

2�
�

0

� ��
�L−z�/q0

� d�

�1 + �2�3/2

−
1

��k0�L − z�
�

�L−z�/q0

� ��d�

�1 + �2�7/4� ,

I2 =
1

2�
�

0

� ��
−z/q0

�L−z�/q0 d�

�1 + �2�3/2

−
1

��k0q0
�

−z/q0

�L−z�/q0 ��d�

�1 + �2�7/4� ,

I3 =
1

2�
�

0

� ��
−�

−z/q0 d�

�1 + �2�3/2 −
1

��k0z
�

−�

−z/q0 �− �d�

�1 + �2�7/4� .

After summation the final expression for the escape factor
reads

(b)(a)

FIG. 11. Transformation to fundamental mode of the density of resonance atoms at three characteristic positions �r=0, z=L /2; r=0, z
=3L /8; r=0, z=L /4� in the case of initial distribution concentrated �a� in the center of the cylinder and �b� on its periphery.

(b)(a)

FIG. 12. The same as in Fig. 11 but for the metastable atoms.

GOLUBOVSKII et al. PHYSICAL REVIEW E 79, 036409 �2009�

036409-10



g�r,z� =
1

��k0�L − z�
1

2�
�

0

�

d��
�L−z�/q0���

� ��d�

�1 + �2�7/4

+
1

��k0

1

2�
�

0

� d�

�q0���
�

−z/q0���

�L−z�/q0��� ��d�

�1 + �2�7/4

+
1

��k0z

1

2�
�

0

�

d��
z/q0���

� ��d�

�1 + �2�7/4 . �A5�

APPENDIX B: TRANSFORMATION OF INTEGRAL
RADIATION TRANSPORT EQUATION TO A SYSTEM OF

LINEAR EQUATIONS

The integral Eq. �1� can be reduced to a system of linear
equations in the following way. By means of cylinder dis-
cretization the integral term the right-hand side of Eq. �2�
without a constant factor A can be replaced by the sum



i=0

N−1



n=0

M−1 �
i�r

�i+1��r

rdr�
0

2�

d��
n�h

�n+1��h

Nr�r,z�K�r,z,rj,zm�dz ,

zm = �m + 1/2��h, rj = �j + 1/2��r . �B1�

If the intervals are small enough, the density Nr can be con-
sidered to be constant in the respective interval. Thus, it can
be extracted according to



i=0

N−1



n=0

M−1

Nr�ri,zn��
i�r

�i+1��r

rdr�
0

2�

d��
n�h

�n+1��h

K�r,z,rj,zm�dz ,

zn = �n + 1/2��h, ri = �i + 1/2��r , �B2�

and Eq. �1� gets the representation

�Nr�rj,zm�
�t

+ AN�rj,zm� − A

i=0

N−1



n=0

M−1

N�ri,zn��
i�r

�i+1��r

rdr

�
0

2�

d��
n�h

�n+1��h

K�r,z,rj,zm�dz = Wr�rj,zm� . �B3�

After rearrangement the final equation for the density of the
resonance atoms reads



i=0

N−1



n=0

M−1

Nr�ri,zn���ij�nm − B̄injm�

=
1

A
�Wr�rj,zm� −

�Nr�rj,zm�
�t

� , �B4�

where B̄ is the four-dimensional matrix of coefficients

B̄injm = �
i�r

�i+1��r

rdr�
0

2�

d��
n�h

�n+1��h

K�r,z,rj,zm�dz .

�B5�

To determine integral �B5� the matrix of integrals

Ginjm = �
0

i�r

rdr�
0

2�

d��
0

n�h

K�r,z,rj,zm�dz �B6�

is used. Then, the elements of the matrix B̄ are determined by

B̄injm = Gi+1,n+1,jm + Ginjm − Gi+1,njm − Gi,n+1,jm. �B7�

The form of the integrals in the matrix G depends on the
positions �ri ,zn� and �rj ,zm� and their relations, respectively.
In other words, it depends on indices i, j, m, and n. Four
possible combinations of the indices occur: �a� j� i and m
�n, �b� j
 i and m
n, �c� j
 i and m�n, and �d� j� i and
m
n.

�a� j� i and m�n. After the translation of the origin of
the cylindrical coordinate system from point �0,0� to point
�rj ,0� and the introduction of new differentials rdrd�dz
=qdqd�dz the matrix elements Ginjm read

FIG. 13. Limits of integration for finite cylinder �left�. Cross
section of the cylinder through a plane �right�.

FIG. 14. Integration area �in variables � and q�; infinite cylinder �left figure�, slab �central figure�, and finite cylinder �right figure�.
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Ginjm = 2�
0

�m

d��
0

zn

dz�
q−

q+

qdq�
0

� ��k�

4�

e−k�
�q2+�zm − z�2

�zm − z�2 + q2 d� ,

�B8�

where

�r − r�� = q2 + �zm − z�2,

q2 = r2 + rj
2 − 2rrj cos � ,

q+ = rj cos � + �ri
2 − rj

2 cos2 � ,

q− = rj cos � − �ri
2 − rj

2 cos2 � ,

�m = arcsin
ri−1/2

rj
.

After the transformation to the variable �= �zm−z� /q the in-
tegral expression

Ginjm = 2�
0

�m

d��
���

d��
q−

q+

dq�
−�

� ��k�

4�

e−k�q�1+�2

1 + �2 d�

�B9�

is obtained. The integration over d�dq is carried out for the
area limited by the curves �=zm /q, �= �zm−zn� /q, q=q−, and
q=q+. This area has to be divided into three parts with cor-
responding integration limits. Finally, one gets Ginjm= I1+ I2
+ I3 with

I1 =
1

2���k0
� 1

�zm − zn
�

0

�m

d��
�zm−zn�/q+

�zm−zn�/q− ��d�

�1 + �2�7/4

− �
0

�m d�

�q+
�

�zm−zn�/q+

�zm−zn�/q− d�

�1 + �2�7/4� ,

I2 =
1

2���k0
�

0

�m

d��
�zm−zn�/q−

�zm�/q+ d�

�1 + �2�7/4� 1
�q−

−
1

�q+
� ,

I3 =
1

2���k0
��

0

�m d�

�q−
�

zm/q+

zm/q− d�

�1 + �2�7/4

−
1

�zm
�

0

�m

d��
zm/q+

zm/q− ��d�

�1 + �2�7/4� .

Similar operations have to be performed for the other com-

binations of indices. The final results are given below.
�b� j
 i and m
n. In this case the integration area is

limited by the curves �=zm /q, �= �zm−zn� /q, q=0, and q
=q+. Note that zm
zn, and the curve �= �zm−zn� /q lies be-
low the q axis �cf. Fig. 14�. Therefore this area again has to
be divided into three parts and one obtains

Ginjm = 1 − I1 − I2 − I3,

I1 =
1

2���k0
�

0

� d�

�q+
�

�zm−zn�/q+

�zm�/q+ d�

�1 + �2�7/4 ,

I2 =
1

2���k0

1
�zm

�
0

�

d��
�zm�/q+

� ��d�

�1 + �2�7/4 ,

I3 =
1

2���k0

1
�zn − zm

�
0

�

d��
−�

�zm−zn�/q+ �− �d�

�1 + �2�7/4 .

�c� j
 i and m�n. Now, the integration area is limited by
curves �=zm /q, �= �zm−zn� /q, q=0, and q=q+, and the curve
�= �zm−zn� /q lies above the q axis. Therefore, the matrix
element Ginjm consists of two components, i.e.,

Ginjm = I1 + I2,

I1 =
1

2���k0
�

0

�

d��
�zm−zn�/q+

zm/q+ d�

�1 + �2�7/4� ��

�zm − zn

−
1

�q+
� ,

I2 =
1

2���k0
�

0

�

d��
zm/q+

� ��d�

�1 + �2�7/4� 1
�zm − zn

−
1

�zm
� .

�d� j� i and m
n. In this case the integration area is
limited by the curves �=zm /q, �= �zm−zn� /q, q=q−, and q
=q+. The matrix element Ginjm consists of three parts accord-
ing to

Ginjm = I1 + I2 + I3,

I1 =
1

2���k0
�

0

�m

d��
zm/q+

zm/q− d�

�1 + �2�7/4� 1
�q−

−
��

�zm
� ,

I2 =
1

2���k0
�

0

�m

d��
�zm−zn�/q+

zm/q+ d�

�1 + �2�7/4� 1
�q−

−
1

�q+
� ,

I3 =
1

2���k0
�

0

�m

d��
�zm−zn�/q−

�zm−zn�/q+ d�

�1 + �2�7/4� 1
�q−

−
�− �

�zn − zm
� .
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